Teoría de Grafos y Geometría Computacional. Algoritmos interactivos en la web.

Mª del Pilar Sabariego Arenas. 8-4-2016.
Teoría de Grafos y Geometría Computacional.
Algoritmos interactivos en la web.

Estructura de las sesiones:
1. Introducción
2. Definición
3. Algunas aplicaciones en la matemática
4. Algunas aplicaciones en el mundo real
5. Aplicaciones y curiosidades
6. Algunos ejemplos
7. Agradecimientos

Diagramas de Levandosky

Tríangulaciones de Delaunay:
Una tríangulación de Delaunay es una forma de triangulación que satisface las condiciones de Delaunay

Nacimiento de la Teoría de Grafos:
Las teorías de grafos surgen a principios del siglo XX, en un contexto matemático

¿Qué es un grafo?

Algoritmos:
Algoritmos para resolver problemas en la teoría de grafos, como búsqueda de camino, ciclo de Euler, etc.

Aplicaciones:
Aplicaciones de la teoría de grafos en diferentes campos, como redes sociales, optimización, etc.

Mª del Pilar Sabariego Arenas.
8-4-2016.

Prezi

FECYT
Estructura de las sesiones.

1. Motivación.
2. Definición.
3. Matemáticos relacionados con la materia.
4. Otras definiciones y propiedades.
5. Aplicaciones y curiosidades.
7. Appleets.
Diagramas de Voronoi y Triangulaciones de Delaunay.
¿Qué tienen en común estas fotos?

Gueorgui Feodosievich Voronoi.
1868 - 1908.
¿Qué tienen en común estas fotos?
Gueorgui Feodosievich Voronoi.
1868 - 1908.
Construir un diagrama de Voronoi es...

dividir el espacio en tantas regiones como puntos u objetos tengamos de tal forma que a cada punto le asignemos la región formada por todo lo que está más cerca de él que de nadie.

Las intersecciones de semiplanos forman regiones de Voronoi.
Las intersecciones de semiplanos forman regiones de Voronoi.
Propiedades.

Una región de Voronoï es no acotada si y sólo si sus generadores están en la envolvente convexa de los puntos.

a) Los bordes de una región de Voronoï son rectas infinitas si y sólo si todos los puntos dados descansan sobre una misma recta.

b) El borde de Voronoï entre dos generadores es una semirrecta si y sólo si los puntos dados no son colineales y los generadores son consecutivos en la frontera de la envolvente convexa de los puntos.

c) El borde de Voronoï entre dos generadores es un segmento de recta si y sólo si los puntos dados son no colineales y al menos uno de los dos generadores está en el interior de la envolvente convexa de ellos.

Dado un diagrama de Voronoï, Vor(P), generado por un conjunto de puntos P en el plano, se cumple:

a) Un punto q es vértice de Vor(P) si y sólo si el círculo máximo vacío centrado en q contiene tres o (en el caso de tratarse de un diagrama degenerado) más generadores en su frontera.

b) La bisectriz entre dos generadores define un borde de Vor(P) si y sólo si existe un punto q sobre dicha bisectriz tal que el círculo máximo vacío centrado en q contiene solamente a estos dos generadores en su frontera.
Una región de Voronoi es no acotada si y sólo si sus generadores están en la envolvente convexa de los puntos.
a) Los bordes de una región de Voronoi son rectas infinitas si y sólo si todos los puntos dados descansan sobre una misma recta.

b) El borde de Voronoi entre dos generadores es una semirrecta si y sólo si los puntos dados no son colineales y los generadores son consecutivos en la frontera de la envolvente convexa de los puntos.

c) El borde de Voronoi entre dos generadores es un segmento de recta si y sólo si los puntos dados son no colineales y al menos uno de los dos generadores está en el interior de la envolvente convexa de ellos.
a) Los bordes de una región de Voronoi son rectas infinitas si y sólo si todos los puntos dados descansan sobre una misma recta.

b) El borde de Voronoi entre dos generadores es una semirrecta si y sólo si los puntos dados no son colineales y los generadores son consecutivos en la frontera de la envolvente convexa de los puntos.

c) El borde de Voronoi entre dos generadores es un segmento de recta si y sólo si los puntos dados son no colineales y al menos uno de los dos generadores está en el interior de la envolvente convexa de ellos.
a) Los bordes de una región de Voronoi son rectas infinitas si y sólo si todos los puntos dados descansan sobre una misma recta.

b) El borde de Voronoi entre dos generadores es una semirrecta si y sólo si los puntos dados no son colineales y los generadores son consecutivos en la frontera de la envolvente convexa de los puntos.

c) El borde de Voronoi entre dos generadores es un segmento de recta si y sólo si los puntos dados son no colineales y al menos uno de los dos generadores está en el interior de la envolvente convexa de ellos.
Dado un diagrama de Voronoi, Vor(P), generado por un conjunto de puntos P en el plano, se cumple:

a) Un punto q es vértice de Vor(P) si y sólo si el círculo máximo vacío centrado en q contiene tres o (en el caso de tratarse de un diagrama degenerado) más generadores en su frontera.

b) La bisectriz entre dos generadores define un borde de Vor(P) si y sólo si existe un punto q sobre dicha bisectriz tal que el círculo máximo vacío centrado en q contiene solamente a estos dos generadores en su frontera.
sólo si existe un punto
Dado un diagrama de Voronoi, Vor(P), generado por un conjunto de puntos P en el plano, se cumple:

a) Un punto q es vértice de Vor(P) si y sólo si el círculo máximo vacío centrado en q contiene tres o (en el caso de tratarse de un diagrama degenerado) más generadores en su frontera.

b) La bisectriz entre dos generadores define un borde de Vor(P) si y sólo si existe un punto q sobre dicha bisectriz tal que el círculo máximo vacío centrado en q contiene solamente a estos dos generadores en su frontera.
Aplicaciones y curiosidades.

Localización de puntos de interés.
https://www.geogebra.org/apps/?id=plxmnf1G

Fútbol.
https://www.geogebra.org/apps/?id=866607F

https://www.jasondavies.com/maps/voronoi/airports/
Localización de puntos de interés.

https://www.geogebra.org/apps/?id=zExmfTQr

Fútbol.

https://www.geogebra.org/apps/?id=2166075
Algoritmos.

Divide y vencerás.

VoroGlide.
http://www.pi6.fem.uni-hagen.de/goonlab/vorglide/

The Voronoi Game.
http://www.voronoi.com/VoronoiGameApplet.html

Voronoi/Delaunay Applet.
http://www.cs.cornell.edu/~sue/people/chew/delaunay.html
VoroGlide.

http://www.pi6.fernuni-hagen.de/geomlab/voroglise/

The Voronoi Game.

http://www.voronoigame.com/VoronoiGameApplet.html

Voronoi/Delaunay Applet.

http://www.cs.cornell.edu/info/people/chew/delaunay.html
Triangulaciones de Delaunay.

Una triangulación de Delaunay es una red de triángulos que cumple la condición de Delaunay.

¿Quién fue Delaunay?

¿Quién fue Delaunay?

Condición de Delaunay: la circunferencia circunscrita de cada triángulo de la red no debe contener ningún vértice de otro triángulo.

Condición de Delaunay: la circunferencia circunscrita de cada triángulo de la red no debe contener ningún vértice de otro triángulo.
Flipping.

Esta triangulación no cumple la condición de Delaunay.

Esta triangulación no cumple la condición de Delaunay.

El flipping de la arista común produce una triangulación que cumple la condición de Delaunay.
Esta triangulación no cumple la condición de Delaunay.
Esta triangulación no cumple la condición de Delaunay.
El *flipping* de la arista común produce una triangulación que cumple la condición de Delaunay
Propiedades.

a) La triangulación forma la envolvente convexa del conjunto de puntos.

b) El ángulo mínimo de todos los triángulos está maximizado.

c) La triangulación es unívoca si en ningún borde de las circunferencias circunscritas hay más de tres vértices.
Propiedades.

a) La triangulación forma la envolvente convexa del conjunto de puntos.

b) El ángulo mínimo de todos los triángulos está maximizado.

c) La triangulación es unívoca si en ningún borde de las circunferencias circunscritas hay más de tres vértices.
Relación con el Diagrama de Voronoi.

La triangulación de Delaunay con todos los circuncentros es el grafo dual del diagrama de Voronoi: los circuncentros son los vértices de los segmentos del diagrama.

Triangulación con las circunferencias circunscritas y sus centros en gris.

Conectando los centros de las circunferencias circunscritas se produce el diagrama de Voronoi (en verde).
Triangulación con las circunferencias circunscribidas y sus centros en gris.
Conectando los centros de las circunferencias circunscritas se produce el diagrama de Voronoi (en verde).
Algoritmos.

Divide y vencerás: dividir el conjunto de puntos en dos partes de igual tamaño, calcular la triangulación de Delaunay para cada parte individualmente y después reunir las dos triangulaciones corrigiendo los errores.

Construcción incremental: añadir un vértice a una triangulación de Delaunay y corregir la red hasta que todos los triángulos cumplan de nuevo la condición de Delaunay.

Sweepline: construir una pequeña parte de la triangulación final y después seguir añadiendo vértices hasta que la triangulación esté completa. No hay que corregir ninguno de los errores que pudieran presentarse.
Algoritmos.

Divide y vencerás: dividir el conjunto de puntos en dos partes de igual tamaño, calcular la triangulación de Delaunay para cada parte individualmente y después reunir las dos triangulaciones corrigiendo los errores.

Construcción incremental: añadir un vértice a una triangulación de Delaunay y corregir la red hasta que todos los triángulos cumplan de nuevo la condición de Delaunay.

Sweepline: construir una pequeña parte de la triangulación final y después seguir añadiendo vértices hasta que la triangulación esté completa. No hay que corregir ninguno de los errores que pudieran presentarse.
Aplicaciones y Curiosidades.

Modelado de objetos tridimensionales.

Triangulaciones.

Triangulación 3D.
http://www.math.tamu.edu/~romweil/delaunay_applet/

Delaunay y Voronoi.
http://people.bath.ac.uk/enscjv/voronoi/tri.html

Modelado de terrenos.

¿Cuál es el mínimo número de guardas, o cámaras de vigilancia, que se necesitan para vigilar una galería de arte?

Si hay \(n \) vértices son suficientes el mayor número entero menor o igual que \(n/3 \).
Modelado de objetos tridimensionales.
Modelado de terrenos.
Triangulaciones.

Triangulación 3D.

http://www.math.tamu.edu/~romwell/delaunay_applet/

Delaunay y Voronoi.

http://people.bath.ac.uk/enscjb/vorono/i/tri.html
¿Cuál es el mínimo número de guardas, o cámaras de vigilancia, que se necesitan para vigilar una galería de arte?

Si hay n vértices son suficientes el mayor número entero menor o igual que n/3.
Teoría de Grafos y Geometría Computacional. Algoritmos interactivos en la web.

Mª del Pilar Sabariego Arenas.
8-4-2016.
Teoría de Grafos.
Nacimiento de la Teoría de Grafos.

Euler.
Königsberg.
1736.

Leonhard Euler.
1707-1783.

Caminos Eulerianos.
Caminos Hamiltonianos.
- Un camino euleriano es aquel que pasa por cada arista del grafo una y solo una vez.
- Un camino hamiltoniano es aquel que pasa por cada vértice del grafo una y solo una vez.
Leonhard Euler.
1707-1783.
Nacimiento de la Teoría de Grafos.

Euler. Königsberg. 1736.

Leonhard Euler. 1707-1783.

Caminos Eulerianos. Caminos Hamiltonianos.
- Un camino euleriano es aquel que pasa por cada arista del grafo una y solo una vez.
- Un camino hamiltoniano es aquel que pasa por cada vértice del grafo una y solo una vez.
Caminos Eulerianos. Caminos Hamiltonianos.

- Un camino euleriano es aquel que pasa por cada arista del grafo una y solo una vez.

- Un camino hamiltoniano es aquel que pasa por cada vértice del grafo una y solo una vez.

Williams Rowan Hamilton. 1805 - 1865.
Williams Rowan Hamilton.
1805 - 1865.
¿Qué es un grafo?

Definiciones.

Un grafo es un par ordenado de conjuntos no vacíos, donde un conjunto es no vacío de objetos cuyas conexiones se expresan con un conjunto de aristas. Un grafo no dirigido no tiene orígenes ni terminales, mientras que un grafo dirigido tiene orígenes y terminales. Un grafo con pesos tiene un peso asignado a cada arista.
Definiciones.

Un subgrafo, \(G' \), es un grafo \(G \) cuyo conjunto de vértices es un subconjunto del de \(G \) y cuyo conjunto de aristas es un subconjunto del conjunto de aristas de \(G \).

- Un grafo \(G \) se dice **conexo** si, para cualquier par de nodos de \(G \), existe al menos una trayectoria (sucesión de vértices adyacentes donde no se repite ningún vértice) de uno a otro.

- El **orden** de un grafo es el número de vértices del grafo. Se denota por \(|G| \), siendo \(G \) el nombre del grafo.

- El **tamaño** de un grafo es el número de aristas o arcos del grafo. Lo denotaremos por \(s(G) \).

- El **grado de un nodo** es el número de aristas incidentes en él. Se denota por \(gr(A) \), si \(A \) es el nombre del nodo.

Un **grafo plano** es un grafo que puede ser dibujado en el plano sin que ninguna arista se cruce.

- Un árbol es un grafo en el que cualesquier dos vértices están conectados por exactamente un camino.

- Un **grafo ponderado** es aquel al que a cada arista se ha añadido un valor, peso o ponderación.

- Un **grafo dirigido** o digrafo es un tipo de grafo en el cual las aristas tienen un sentido definido, a diferencia del grafo no dirigido, en el cual las aristas son relaciones simétricas y no apuntan en ningún sentido.

http://gi.wank.net/#31-2.2-3.3-1
Un **subgrafo**, G', es un grafo G cuyo conjunto de vértices es un subconjunto del de G y cuyo conjunto de aristas es un subconjunto del conjunto de aristas de G.
- Un grafo G se dice **conexo** si, para cualquier par de nodos de G, existe al menos una trayectoria (sucesión de vértices adyacentes donde no se repite ningún vértice) de uno a otro.
- El **orden de un grafo** es el número de vértices del grafo. Se denota por o(G), siendo G el nombre del grafo.

- El **tamaño de un grafo** es el número de aristas o arcos del grafo. Lo denotaremos por s(G).

- El **grado de un nodo** es el número de aristas incidentes en él. Se denota por gr(A), si A es el nombre del nodo.
Un grafo plano es un grafo que puede ser dibujado en el plano sin que ninguna arista se cruce.
- **Un árbol** es un grafo en el que cualesquiera dos vértices están conectados por exactamente un camino.

- **Grafo ponderado** es aquel al que a cada arista se le ha añadido un valor, peso o ponderación.

- **Grafo dirigido o digrafo** es un tipo de grafo en el cual las aristas tienen un sentido definido, a diferencia del grafo no dirigido, en el cual las aristas son relaciones simétricas y no apuntan en ningún sentido.

http://g.ivank.net/#3:1-2,2-3,3-1
- Un **árbol** es un grafo en el que cualesquiera dos vértices están conectados por exactamente un camino.

- Un **grafo ponderado** es aquel al que a cada arista se le ha añadido un valor, peso o ponderación.

- Un **grafo dirigido o digrafo** es un tipo de grafo en el cual las aristas tienen un sentido definido, a diferencia del grafo no dirigido, en el cual las aristas son relaciones simétricas y no apuntan en ningún sentido.

http://g.ivank.net/#3:1-2,2-3,3-1
- Un árbol es un grafo en el que cualesquiera dos vértices están conectados por exactamente un camino.

- Un grafo ponderado es aquel al que a cada arista se le ha añadido un valor, peso o ponderación.

- Un grafo dirigido o digrafo es un tipo de grafo en el cual las aristas tienen un sentido definido, a diferencia del grafo no dirigido, en el cual las aristas son relaciones simétricas y no apuntan en ningún sentido.

http://g.ivank.net/#3:1-2,2-3,3-1
- Un **árbol** es un grafo en el que cualesquiera dos vértices están conectados por exactamente un camino.

- Un **grafo ponderado** es aquel al que a cada arista se le ha añadido un valor, peso o ponderación.

- Un **grafo dirigido o digrafo** es un tipo de grafo en el cual las aristas tienen un sentido definido, a diferencia del grafo no dirigido, en el cual las aristas son relaciones simétricas y no apuntan en ningún sentido.

http://g.ivank.net/#3:1-2,2-3,3-1
Aplicaciones.

- Mapas conceptuales.
- Diagramas de flujo de datos.
- Planos de autopistas.
- Circuitos eléctricos.
- Redes de computadoras.
- Organigramas.
- Composiciones químicas.
- Redes de telefonía móvil.
- Sociogramas o sociografías.

¿Es posible colorear un mapa sólo con cuatro colores?
Mapas conceptuales.
Planos de estaciones de metro.
Planos de autopistas.
Circuitos eléctricos.
Sociogramas o sociógrafos.
Redes de computadores.
Organigramas.
Compuestos químicos.
Redes de telefonía móvil.
MIT Beaver Academic Tournament – Playoff Bracket

First Round	Round of 16	Quarterfinals	Semifinals	Finals	Champion
17 Concord-Carlisle B	8 Williston	50-115 Smithtown East C			
12 Coxsackie-Athens A	5 E. O. Smith C	265-105 Coxsackie-Athens A	E. O. Smith C	335-120 Manlius Pebble Hill	Manlius Pebble Hill
21 Dolgeville Central	23 Smithtown West D	320-40 Smithtown West A			
13 Smithtown West A					
14 Smithtown East D	3 Smithtown East A	170-125 Smithtown East D	Smithtown East A		
19 Emma Willard	6 Northampton A	85-235 E. O. Smith B			
22 Coxsackie-Athens B	11 E. O. Smith B	135-75			
7 Concord-Carlisle A	190-115 Smithtown West C	Concord-Carlisle A			
10 Smithtown West C	18 Smithtown West B	165-95 Smithtown East B	Aiken		
2 Aiken	270-155 Aiken	215-195			
15 Smithtown East B | | | | |

Clasificaciones.
¿Es posible colorear un mapa sólo con cuatro colores?
Francis Guthrie. 1831 - 1899.

Wolfgang Haken. 1928 -
Cálculo del camino más corto.

Algoritmo de Dijkstra.

https://docs.google.com/document/d/1MTHd_OWNm5AcE_NV8yw_m1P_YA8RVWaYkOQbloRJlw/edit?usp=sharing

Algoritmo de Dijkstra. (Demo.)

Algoritmo de Dijkstra.
http://www.dgp.toronto.edu/~jstewart/270/9798s/Laffra/DijkstraApplet.html
Algoritmo de Dijkstra.

Cálculo del camino más corto.

Algoritmo de Dijkstra.

https://docs.google.com/document/d/1MTHd_OwNmw5AcE_NV8yw_m1P_YA8RVWaYkOQbloRJlw/edit?usp=sharing

Algoritmo de Dijkstra. (Demo.)

Algoritmo de Dijkstra.
http://www.dgp.toronto.edu/~jstewart/270/9798s/Laffra/DijkstraApplet.html
Algoritmo de Dijkstra. (Demo.)

Algoritmo de Dijkstra.
http://www.dgp.toronto.edu/~jstewart/270/9798s/Laffra/DijkstraApplet.html
Seis grados de separación.

Hipótesis que intenta probar que cualquiera en la Tierra puede estar conectado a cualquier otra persona del planeta a través de una cadena de conocidos que no tiene más de cinco intermediarios.

http://wwwp.oakland.edu/enp/
http://oracleofbacon.org/
http://erdosbaconsabbath.com/the-list/
de una cadena de conocidos que no te
http://wwwp.oakland.edu/enp/

http://oracleofbacon.org/

http://erdosbaconsabbath.com/the-list/
Teoría de Grafos y Geometría Computacional. Algoritmos interactivos en la web.

Mª del Pilar Sabariego Arenas. 8-4-2016.