Primer grupo de problemas

nombre ---> número

La representación en base 10 de un número natural N consta de 3333 cifras, totes ellas iguales a 9.

$$N = \underbrace{99999...99}_{3333}$$

Quants 9 apareixen si escrivim el nombre N^2?

Atención!!! La respuesta es un número de cuatro cifras $abcd$.
Las dos primeras cifras pasan al problema 8 como número $A=ab$;
las dos últimas pasan también al problema 8 como número $B=cd$.

Calcula el área de un rombo cuyos lados tienen longitud 4 y la suma de sus diagonales es 10.

Los dígitos A, B, C y D verifican que los cuatro números de cuatro cifras $ADDD$, $AAPA$, $BCDB$ y $BDAC$ son números primos.
¿Cuál es el número $BDAC$?

Viene un número P del problema 6, la solución de aquel problema.

¿Cuál es la probabilidad de que al tirar 3 dados de 6 caras, numeradas con 1, 2, 3, 4, 5 y 6, el producto de los resultados sea exactamente el valor P que pasa del problema 6?

¡Atención! Deberéis escribir la solución como una fracción irreducible (numerator separado del denominador con el signo /, sin ningún otro signo ni espacio en blanco)
Lucía está realizando una creación magnífica como propuesta para su árbol de Navidad. Para ello ha dibujado un cuadrado de lado 5 cm. Después ha encontrado los puntos medios de cada lado y los ha unido, pintando uno de los triángulos que quedan en una esquina, como se ve en la primera imagen.

A continuación ha hecho lo mismo en el cuadrado que había quedado dibujado al unir los puntos medios del primer y ha pintado uno de los triángulos resultantes. Y va repitiendo el proceso. En las imágenes se ven las cinco primeras repeticiones del proceso. Si lo pudiera repetir infinitas veces, ¿qué fracción del área del cuadrado quedaría pintada?

La solución se deberá escribir como una fracción irreducible.
El denominador de la respuesta (escrita como se ha indicado) pasa al problema 10 como el valor numérico del área de un triángulo (área 1)

Segundo grupo de problemas

En el cuadrado $ABCD$, sea P un punto interior al mismo y E, F, G y H los puntos medios de los lados, tal como se ve en la figura.
Tenemos el valor de las tres áreas indicadas: la del cuadrilátero $HPED$ es de 24 cm2, la del cuadrilátero $EPFC$ es de 30 cm2, y la de $FPGB$, 48 cm2.
¿Cuál es, en cm, la longitud del lado del cuadrado $ABCD$?

El valor numérico de la respuesta, que es un número entero, pasa al problema 4 como valor P.

Si el lado del cuadrado de la figura es de 5 cm, calcula el área de la región que se ha coloreado, interior al cuadrado.

¡Atención! Deberás dar la respuesta como un número entero, el resultado de redondear el área a los milímetros cuadrados.

Pasas dos números A y B, cada uno de dos cifras, del problema 1.

¿Cuál es el resto de dividir $3(A^B)$ entre 7?
Retos finales

Conocemos las áreas de los triángulos equiláteros ΔABC y ΔBDE de la figura, que son los valores que pasan, respectivamente del problema 5 (área 1) y del problema 9 (área 2).

Véase que el vértice B es común y que A, B, D están alineados. Tomando CE como uno de sus lados, construimos el triángulo equilátero ΔCEF. Calcula el área de este triángulo ΔCEF.

Alicia y Berto juegan al siguiente juego:

- Alicia escoge un número N de dos cifras y después se turnan para dividirlo por números primos.
- En sus respectivos turnos, cada uno de ellos escoge un número primo, divide el número actual entre dicho primo tantas veces como quiera (pero necesariamente al menos una) y pasa el resultado a su compañero.
- Después que Alicia ha escogido el número empieza a jugar Berto y se van turnando.
- Gana la primera persona que consiga llegar al 1.

¿Para cuántos números N de dos cifras Alicia puede estar segura que podrá ganar la partida?

Sean tres números enteros positivos x, y, z, distintos entre sí, que sean solución de la ecuación $xyz + xy + x = 24$

y que hagan mínima la suma

$S = x + y + z$.

Determina para ese valor mínimo de S, el número x.
Problemas de propina

Problema 1 "de propina"

Per a cada terna de nombres reals no nuls, a, b, c, calculem el nombre

$$\frac{a}{|a|} + \frac{b}{|b|} + \frac{c}{|c|} + \frac{a \cdot b \cdot c}{|a \cdot b \cdot c|}$$

Quants nombres distintos podem obtenir i quant val la suma dels quadrats de tots ells?

Problema 2 "de propina"

Halla el valor de la suma $m + n$, siendo m y n, los únicos enteros positivos con $m < n$ que verifican la relación

$$\frac{2}{17} = \frac{1}{n} + \frac{1}{m}$$

Problema 3 "de propina"

En la figura, las rectas AD y AE dividen en tres partes iguales el ángulo A del triángulo ABC. Las longitudes de BD, DE y EC que están indicadas en la figura son, respectivamente, 2 cm, 3 cm y 6 cm. Determina la longitud del lado más corto del triángulo ABC y, para poderla dar rápidamente con exactitud, se pide que en el formulario de respuesta esribas el cuadrado de esta longitud.

una pista