Tres Heurísticos Matemáticos

Principio del Palomar

Principio de Invarianza

Principio de Inducción

IV Seminario ESTALMAT, 2011

- Consideraciones generales
 - Objetivos
 - Líneas básicas de la propuesta
 - Materiales
- Algunas de las actividades propuestas
 - Principio del Palomar
 - Principio de Invarianza
 - Principio de Inducción
- Conclusiones
 - Acerca de la experiencia

- Consideraciones generales
 - Objetivos
 - Líneas básicas de la propuesta
 - Materiales
- Algunas de las actividades propuestas
 - Principio del Palomar
 - Principio de Invarianza
 - Principio de Inducción
- 3 Conclusiones
 - Acerca de la experiencia

Heurística: conjunto de herramientas, destrezas, hipótesis, ... para el descubrimiento o explcación de algunos resultados - matemáticos -

- Usar y analizar diferentes heurísticos
- Conseguir que tales heurísticos constituyan una competencia matemática en nuestros estudiantes
- Favorecer la idea de que determinados enunciados poseen un estilo propio para ser resueltos
- Preservar la idea de que su conocimiento no siempre garantiza la solución de un problema.

- Consideraciones generales
 - Objetivos
 - Líneas básicas de la propuesta
 - Materiales
- Algunas de las actividades propuestas
 - Principio del Palomar
 - Principio de Invarianza
 - Principio de Inducción
- 3 Conclusiones
 - Acerca de la experiencia

A desarrollar en tres sesiones de Segundo Curso

- Una sesión por cada uno de los Principios.
- Para las del Principio del Palomar y de invarianza, se toman como punto de partida actividades de Matemáticas para Estimular el Talento, Actividades del Proyecto Estalmat y se completan con otras.
- En todas las sesiones, los problemas propuestos son de índole diversa.
- Cada sesión es de tres horas:
 - La primera destinada a la resolución de actividades introductorias.
 - Durante la media hora siguiente, se produce la aportación teórica del profesor.
 - El resto del tiempo se dedica a actividades de consolidación.

- Consideraciones generales
 - Objetivos
 - Líneas básicas de la propuesta
 - Materiales
- Algunas de las actividades propuestas
 - Principio del Palomar
 - Principio de Invarianza
 - Principio de Inducción
- Conclusiones
 - Acerca de la experiencia

Ninguno es imprescindible

En el Proyecto Estalmat Cantabria a cada estudiante se le entregan en papel todos los enunciados (de uno en uno).

Puede ser útil:

- En la sesión del Principio del Palomar, disponer de algunos tableros de ajedrez.
- Cuando se aborda el Principio de Invarianza, ocupar un aula que disponga de ordenadores (actividades que pueden ensayarse en applets disponibles en red).
- Para la sesión del Principio de Inducción, preparar fichas con tramas cuadradas y tableros cuadriculados de diferentes tamaños.

- Consideraciones generales
 - Objetivos
 - Líneas básicas de la propuesta
 - Materiales
- Algunas de las actividades propuestas
 - Principio del Palomar
 - Principio de Invarianza
 - Principio de Inducción
- Conclusiones
 - Acerca de la experiencia

Una de cada tipo

En ambiente lúdico (Actividad de consolidación)

En un tablero de ajedrez hay colocadas 17 torres. Prueba que al menos tres torres no se amenazan entre sí.

En ambiente geométrico (Actividad de consolidación)

Demuestra que en cualquier polígono convexo de 2*n* lados hay una diagonal cuya dirección no es paralela a ninguna de las direcciones de los lados..

En ambiente aritmético (Actividad de ampliación)

La representación decimal de $\frac{a}{b}$, con a y b primos entre sí, tiene un periodo de, a lo sumo, b-1 cifras.

Una de cada tipo

En ambiente lúdico (Actividad de consolidación)

En un tablero de ajedrez hay colocadas 17 torres. Prueba que al menos tres torres no se amenazan entre sí.

En ambiente geométrico (Actividad de consolidación)

Demuestra que en cualquier polígono convexo de 2*n* lados hay una diagonal cuya dirección no es paralela a ninguna de las direcciones de los lados..

En ambiente aritmético (Actividad de ampliación)

La representación decimal de $\frac{a}{b}$, con a y b primos entre sí, tiene un periodo de, a lo sumo, b-1 cifras.

Una de cada tipo

En ambiente lúdico (Actividad de consolidación)

En un tablero de ajedrez hay colocadas 17 torres. Prueba que al menos tres torres no se amenazan entre sí.

En ambiente geométrico (Actividad de consolidación)

Demuestra que en cualquier polígono convexo de 2*n* lados hay una diagonal cuya dirección no es paralela a ninguna de las direcciones de los lados..

En ambiente aritmético (Actividad de ampliación)

La representación decimal de $\frac{a}{b}$, con a y b primos entre sí, tiene un periodo de, a lo sumo, b-1 cifras.

- Consideraciones generales
 - Objetivos
 - Líneas básicas de la propuesta
 - Materiales
- Algunas de las actividades propuestas
 - Principio del Palomar
 - Principio de Invarianza
 - Principio de Inducción
- Conclusiones
 - Acerca de la experiencia

De carácter y momentos distintos

En ambiente aritmético (Intervención del profesor)

Algoritmo de Euclides para la obtención del máximo común divisor.

En ambiente geométrico (Actividad de consolidación

La escena inicial simula un triángulo construido a partir de tres alfileres (es posible modificar su orientación y su número).

- Determina las posibles configuraciones de los vértices.
- Ensayando, trata de descubrir alguna relación en las configuraciones de los vértices de un cuadrado o de un pentágono.
- 3 ¿Te atreves a formular una conjetura?

De carácter y momentos distintos

En ambiente aritmético (Intervención del profesor)

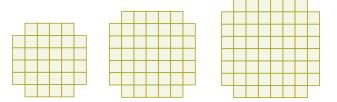
Algoritmo de Euclides para la obtención del máximo común divisor.

En ambiente geométrico (Actividad de consolidación)

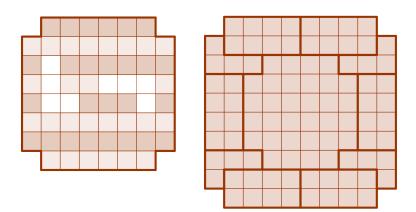
http://www.cut-the-knot.org/Curriculum/Algebra/FirstProof.shtml.

La escena inicial simula un triángulo construido a partir de tres alfileres (es posible modificar su orientación y su número).

- Determina las posibles configuraciones de los vértices.
- Ensayando, trata de descubrir alguna relación en las configuraciones de los vértices de un cuadrado o de un pentágono.
- ¿Te atreves a formular una conjetura?



- Consideraciones generales
 - Objetivos
 - Líneas básicas de la propuesta
 - Materiales
- Algunas de las actividades propuestas
 - Principio del Palomar
 - Principio de Invarianza
 - Principio de Inducción
- Conclusiones
 - Acerca de la experiencia

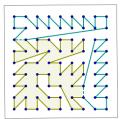

Como ejemplo, las actividades más exitosas

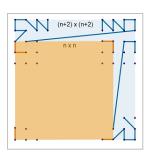
En ambiente lúdico (Actividad de introducción)

Se proporcionan varios tableros cuadriculados de tamaños 6 \times 6, 7 \times 7, 8 \times 8 y 10 \times 10 "sin esquinas".

¿Cuáles se pueden recubrir con L-tetraminós? Trata de generalizar los resultados.

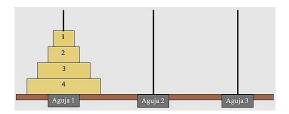
 8×8 : NO (por coloración) 10×10 : SI (se apoya en 6×6) Si n = 4k + 2, un tablero $n \times n$ "sin esquinas" se puede recubrir por L-tetraminós. Si n = 4k, no.


Como ejemplo, las actividades más exitosas


En ambiente geométrico (Actividad de consolidación)

Con tramas cuadradas de diferentes tamaños (de 2×2 a 8×8), construir el polígono con mayor número de vértices posible en puntos de la trama.

Ilustración del método empleado. Reacción de los estudiantes.

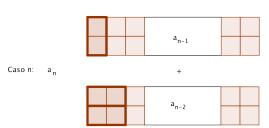


Santiago de Compostela 2011

Como ejemplo, las actividades más exitosas

En ambiente lúdico (Actividad de consolidación)

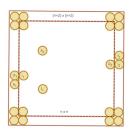
Se presenta el juego de las torres de Hanoi.


Se pide resolver para 3 discos (anotando nº de movimientos), y explicar cómo, a partir de él, se resolvería el de 4 discos. Surge, de manera natural, resolver el rompecabezas de 5 discos basándose en el de 4. El camino para la generalización y su demostración mediante un proceso inductivo está hecho.

Otras actividades interesantes

En ambiente lúdico (Actividad de ampliación)

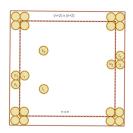
Sea a_n el número de maneras de rellenar un rectángulo de tamaño $2 \times n$ con fichas de tamaño 2×1 . Después de haber determinado a_1, a_2, \ldots, a_6 , establece una relación entre esos valores y justifica la generalización de la relación encontrada.


Con esta actividad se hace observar que no siempre una relación de recurrencia precisa el método de inducción para su justificación.

Otras actividades interesantes

En homenaje a Miguel de Guzmán (Actividad de ampliación)

Se colocan 4, 9, 16, 25, 36 y 49 monedas iguales formando cuadrados. Una mosca se posa en uno. "Se le ocurre" recorrer todas las monedas, (condiciones). ¿Podrá? ¿Se puede diseñar un itinerario? ¿Y para un cuadrado $n \times n$?



Su interés, usar otros heurísticos (simetrías, coloración,...) y diseño de camino para 'enganchar"

Otras actividades interesantes

En homenaje a Miguel de Guzmán (Actividad de ampliación)

Se colocan 4, 9, 16, 25, 36 y 49 monedas iguales formando cuadrados. Una mosca se posa en uno. "Se le ocurre" recorrer todas las monedas, (condiciones). ¿Podrá? ¿Se puede diseñar un itinerario? ¿Y para un cuadrado $n \times n$?

Su interés, usar otros heurísticos (simetrías, coloración,...) y diseño de camino para "enganchar"

19/22

- Consideraciones generales
 - Objetivos
 - Líneas básicas de la propuesta
 - Materiales
- Algunas de las actividades propuestas
 - Principio del Palomar
 - Principio de Invarianza
 - Principio de Inducción
- Conclusiones
 - Acerca de la experiencia

Acerca de la experiencia

Las actividades presentadas (salvo las de ampliación) y otras similares se han desarrollado durante los cursos 2009/2010 y 2010/2011 en Segundo Curso de Estalmat Cantabria.

La experiencia muestra que, en general, los estudiantes

- Trabajan la mayor parte de las actividades con gran interés
- Admiten bien el uso de notación desligada de los casos concretos
- Se muestran muy competitivos en las actividades que requieren "técnicas puzzle"
- En los pasos más abstractos, dejan notar ciertas diferencias en el grado de percepción

Bibliografía

- Biggs, N.L. Matemática Discreta. Ed. Vicens Vives.
- Bogomolny, A. *Interactive Mathematics Miscellany and Puzzles*. http://www.cut-the-knot.org.
- Engel, A. Problem-Solving Strategies. Ed. Springer.
- Guzmán, M. *Cómo hablar, demostrar y resolver en Matemáticas*. Ed. Anaya.
- Pérez A. y Sánchez, M. (coordinadores). *Matemáticas para estimular el talento. Actividades del Proyecto Estalmat.* Ed. Thales.